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Abstract

The momentum and heat transfer in a laminar liquid ®lm on a horizontal stretching sheet is analysed. The
governing time-dependent boundary layer equations are reduced to a set of ordinary di�erential equations by means

of an exact similarity transformation. The resulting two-parameter problem is solved numerically for some
representative values of the unsteadiness parameter S for Prandtl numbers from 0.001 to 1000. The temperature is
observed to increase monotonically from the elastic sheet towards the free surface except in the high di�usivity limit
Pr 4 0 where the surface temperature approaches that of the sheet. A low stretching rate, i.e. high values of S,

tends to reduce the surface temperature for all Prandtl numbers. The heat ¯ux from the liquid to the elastic sheet
decreases with S for PrI0.1 and increases with increased unsteadiness for Pri1. # 1999 Elsevier Science Ltd. All
rights reserved.

1. Introduction

The analysis of ¯uid ¯ow and heat transfer across a

thin liquid ®lm is important for the understanding and

design of various heat exchangers and chemical pro-

cessing equipment. Applications include wire and ®ber

coating, food stu� processing, reactor ¯uidization,

transpiration cooling, polymer processing, etc.

Production of a thin liquid ®lm either on the surface

of a vertical wall by means of the action of gravity or

on a rotating horizontal disk due to the action of cen-

trifugal forces has been studied considerably in the lit-

erature (see e.g. Sparrow and Gregg [1,2] and

Dandapat and Ray [3,4]). In a melt-spinning process,

the extrudate from the die is generally drawn and sim-

ultaneously stretched into a ®lament or sheet, which is

then solidi®ed through rapid quenching or gradual

cooling by direct contact with water or chilled metal

rolls. In fact, stretching imports a unidirectional orien-

tation to the extrudate, thereby improving its mechan-

ical properties and the quality of the ®nal product

greatly depends on the rate of cooling.

A class of ¯ow problems with obvious relevance to

polymer extrusion is the ¯ow induced by the stretching

motion of a ¯at elastic sheet. Crane [5] was the ®rst

who studied the motion set up in the ambient ¯uid due

to a linearly stretching surface. Several authors, e.g.

Refs. [6±14], have subsequently explored various

aspects of the accompanying heat transfer occurring in

the in®nite ¯uid medium surrounding the stretching

sheet. The hydrodynamics of a ®nite ¯uid medium, i.e.

a thin liquid ®lm, on a stretching sheet was ®rst con-

International Journal of Heat and Mass Transfer 43 (2000) 69±74

0017-9310/00/$ - see front matter # 1999 Elsevier Science Ltd. All rights reserved.

PII: S0017-9310(99 )00123-4

www.elsevier.com/locate/ijhmt

* Corresponding author. Tel.: +47-7359-3556; fax: +47-

7359-3491.

E-mail address: helge.i.andersson@mtf.ntnu.no (H.I.

Andersson)



sidered by Wang [15] who by means of a similarity

transformation reduced the unsteady Navier±Stokes
equations to a non-linear ordinary di�erential
equation. The same problem was more recently

extended by the present authors [16] to ¯uids obeying
non-Newtonian constitutive equations.
The purpose of the present paper is to explore the

heat transfer characteristics of the hydrodynamical
problem solved by Wang [15]. It will be demonstrated
that exact similarity can be achieved also for the tem-

perature ®eld. Accurate numerical solutions will be
provided for two characteristic values of the dimen-
sionless unsteadiness parameter introduced in Ref. [15],
covering the range of Prandtl numbers from 0.001 to

1000.

2. Mathematical formulation

Let us ®rst consider a thin elastic sheet which
emerges from a narrow slit at the origin of a Cartesian

coordinate system, as shown schematically in Fig. 1.
The continuous sheet at y = 0 is parallel with the x-
axis and moves in its own plane with the velocity.

U � bx=�1ÿ at� �1�
where b and a are both positive constants with dimen-
sion timeÿ1. Similarly, the surface temperature Ts of

the stretching sheet varies with the distance x from the
slit as

Ts � To ÿ Tref �bx 2=2n��1ÿ at�ÿ3=2, �2�
where To denotes the temperature at the slit and bx 2/

n(1ÿat ) can be recognized as a local Reynolds number
based on the surface velocity U. Tref can be taken
either as a constant reference temperature or a con-
stant temperature di�erence. In the present problem

with only the slit temperature To being kept constant,
Tref could conveniently be set equal to To. The special
case of an isothermal sheet with Ts=To, i.e. Tref=0,

will be treated separately in Appendix A.
The expression (1) for the sheet velocity U(x, t )

re¯ects that the elastic sheet, which is ®xed at the ori-

gin, is stretched by applying a force in the positive x-
direction. The e�ective stretching rate b/(1ÿat )
increases with time since a>0. Similarly, the ex-

pression (2) for the temperature Ts(x, t ) of the sheet

Nomenclature

b stretching rate [sÿ1]
c constant, Eq. (14b)
cp speci®c heat [J kgÿ1 Kÿ1]
f dimensionless stream function, Eq. (7a)
h ®lm thickness [m]
Nux local Nusselt number, Eq. (13)

Pr Prandtl number, n/k
q heat ¯ux, ÿrcpk @T/@y [J sÿ1 mÿ2]
Rex local Reynolds number, Ux/n
S unsteadiness parameter, a/b
t time [s]
T temperature [K]
u horizontal velocity component [m sÿ1]
U sheet velocity [m sÿ1]
v vertical velocity component [m sÿ1]
x horizontal coordinate [m]

y vertical coordinate [m].

Greek symbols
a constant [sÿ1]
b dimensionless ®lm thickness

Z similarity variable, Eq. (7c)
y dimensionless temperature, Eq. (7b)
k thermal di�usivity [m2 sÿ1]
m dynamic viscosity [kg mÿ1 sÿ1]
n kinematic viscosity [m2 sÿ1]
r density [kg mÿ3]
t shear stress, m @u/@y [kg mÿ1 sÿ2]
c stream function [m2 sÿ1].

Subscripts
i isothermal sheet

o origin
ref reference value
s sheet

x local value.

Fig. 1. Schematic representation of a liquid ®lm ¯ow on an

elastic sheet.
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represents a situation in which the sheet temperature
decreases from To at the slit in proportion to x 2 and

such that the amount of temperature reduction along
the sheet increases with time. The particular form of
the above expressions for U(x, t ) and Ts(x, t ) has been

chosen in order to be able to devise a new similarity
transformation which transforms the governing partial
di�erential equations for heat and momentum into a

set of ordinary di�erential equations, thereby facilitat-
ing the exploration of the e�ects of the controlling par-
ameters. It should be noticed, however, that the

expressions (1) and (2), on which the following analysis
is based, are valid only for time t< aÿ1.
A thin liquid ®lm of uniform thickness h(t ) lies on

the horizontal sheet (cf Fig. 1). The ¯uid motion

within the ®lm is caused solely by the stretching of the
elastic sheet. The velocity ®eld and temperature in the
constant-property Newtonian ¯uid layer are governed

by the two-dimensional boundary layer equations for
mass, momentum and thermal energy:

@u

@x
� @v
@y
� 0, �3�

@u

@ t
� u

@u

@x
� v

@u

@y
� n

@ 2u

@y2
, �4�
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@ t
� u

@T

@x
� v

@T

@y
� k

@ 2T

@y2
, �5�

where viscous dissipation of energy has been assumed
negligible. The pressure is constant in the surrounding

gas phase and the gravity force gives rise to a hydro-
static pressure variation in the liquid ®lm. The associ-
ated boundary conditions are

u � U; v � 0; T � Ts at y � 0 �6a�

@u=@y � @T=@y � 0 at y � h �6b�

v � dh=dt at y � h �6c�

Here, it is implicitly assumed that the mathematical
problem is de®ned only for xr0. It is moreover
assumed that the surface of the planar liquid ®lm is

smooth and free of surface waves. The in¯uence of
interfacial shear due to the quiescent atmosphere is
negligible and so is the surface tension. The viscous

shear stress t=m @u/@y and the heat ¯ux q=ÿrcpk @T/
@y vanish at the adiabatic free surface, cf Eq. (6b),
whereas Eq. (6c) imposes a kinematic constraint on the

¯uid motion.
Let us now introduce new dimensionless variables f

and y and the similarity variable Z:

c � fnb�1ÿ at�ÿ1g1=2xf �Z� �7a�

T � To ÿ Tref �bx 2=2n��1ÿ at�ÿ3=2y�Z� �7b�

Z � �b=n�1=2�1ÿ at�ÿ1=2y �7c�

where c(x, y ) is the physical stream function which
automatically assures mass conservation (3). The vel-

ocity components are readily obtained as:

u � @c=@y � bx�1ÿ at�ÿ1f 0�Z� �8a�

v � ÿ@c=@x � ÿfnb�1ÿ at�ÿ1g1=2f �Z� �8b�

The mathematical problem de®ned in Eqs. (3)±(6)

transforms exactly into a set of ordinary di�erential
equations and their associated boundary conditions:

S

�
f 0 � Z

2
f 00
�
� � f 0�2 ÿ ff 00 � f 000 �9�

Pr��S=2��3y� Zy 0� � 2yf 0 ÿ y 0f � � y 00 �10�

f 0�0� � 1; f �0� � 0; y�0� � 1 �11a�

f 00�b� � 0; y 0�b� � 0 �11b�

f �b� � Sb=2 �11c�

where S0a/b is a dimensionless measure of the

unsteadiness and a prime indicates di�erentiation with
respect to Z. Moreover, b denotes the value of the
similarity variable Z at the free surface so that Eq. (7c)

gives b=(b/n )1/2(1ÿat )ÿ1/2h for y=h. Since b is a yet
unknown constant, which should be determined as an
integral part of the boundary-value problem, we

obtain

dh

dt
� ÿab

2

�
n
b

�1=2

�1ÿ at�ÿ1=2 �12�

for the rate-of-change of the ®lm thickness. The kin-
ematic constraint (6c) at y=h(t ) thus transforms into
the free surface condition (11c).

It is noteworthy that the momentum boundary layer
problem de®ned by the ODE (9) subject to the relevant
boundary conditions (11) is decoupled from the ther-

mal boundary layer problem, while the temperature
®eld y(Z ) is on the other hand coupled to the velocity
®eld. The hydrodynamical problem was solved numeri-

cally by Wang [15] for several values of S in the range
0 < S< 2 and supplemented by asymptotic solutions
for thin (S 1 2) and thick (S 1 0) ®lms. More
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recently, this problem was recovered as a special case

of a power-law ®lm ¯ow on an unsteady stretching
sheet [16].

3. Numerical results

The non-linear di�erential equations (9) and (10)

subject to the boundary conditions (11) constitute a
two-point boundary-value problem, which can be
solved by the multiple shooting subroutine MUSN, cf

Ascher et al. [17].
Converged numerical results were obtained for two

representative values of the unsteadiness parameter S

and for Prandtl numbers in the range from 0.001 to
1000. Temperature similarity pro®les y(Z ) for S= 0.8
and S= 1.2 are shown in Figs. 2 and 3, respectively.

The variation of the free-surface temperature y(b ) with

Pr is presented in Fig. 4, while the temperature gradi-

ent y '(0) at the stretching sheet is displayed in Fig. 5.
The latter quantity is of particular importance since
the heat transfer between the surface and the ¯uid is

conventionally expressed in dimensionless form as a
local Nusselt number

Nux � ÿ x

Tref

�
@T

@y

�
y�0
� 1

2
�1ÿ at�ÿ1=2y 0�0�Re3=2x �13�

where Rex=Ux/n is a local Reynolds number based on
the surface velocity U de®ned in Eq. (1) and Tref

denotes the same reference temperature (or tempera-
ture di�erence) as in Eq. (2).

4. Discussions

Let us ®rst recall the major ®ndings of Wang [15]
for the hydrodynamic part of the problem. For posi-

tive values of the unsteadiness parameter S, Wang
observed that solutions exist only for 0 R S R 2.
Moreover, when S tended to zero the solution

approached the analytical solution due to Crane [5] for
an in®nitely thick layer of ¯uid, i.e. b 41. On the
other hand, the limiting solution as S 4 2.0 represents

a liquid ®lm with in®nitesimal thickness, i.e. b4 0.
Wang observed that the ®lm thickness b decreased
monotonically when S was increased from 0 to 2.
Since the ¯uid motion is driven solely by the stretching

sheet, the surface gradient f0(0) of the velocity com-
ponent u parallel to the sheet is negative. It was
observed that the magnitude of f0(0) increased with S

until it reached a maximum of 1.283 near S= 1.11
and thereafter rapidly decreased to zero as S
approached 2.0.

The similarity solutions for the dimensionless tem-
perature in Figs. 2 and 3 show that y decreases mono-
tonically with Z, i.e. with the distance from the elastic

Fig. 2. Dimensionless temperature pro®les y(Z ) (solid lines)

and velocity pro®le f '(Z ) (broken line) for S= 0.8

(b=2.15199 and f 0(0)=ÿ1.24581).

Fig. 3. Dimensionless temperature pro®les y(Z ) (solid lines)

and velocity pro®les f '(Z ) (broken line) for S= 1.2

(b=1.12778 and f 0(0)=ÿ1.27917).

Fig. 4. Dimensionless surface temperature y(b ) vs Prandtl

number for S= 0.8 (solid line) and S= 1.2 (broken line).
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sheet, for all Prandtl numbers. This implies that the

temperature T gradually increases with Z from

Ts(RTo) at Z=0. It is noteworthy that y vanishes at

the free surface Z=b for su�ciently high Prandtl num-

bers, i.e. Pri10, which means that the surface tem-

perature T equals the temperature To which prevails at

the origin x=y= 0. This in turn implies that the sur-

face temperature becomes independent both of position

x and time t. The variation of y(b ) with Pr displayed

in Fig. 4 reveals that uniformity of the surface tem-

perature can be achieved at somewhat lower Prandtl

numbers for S= 0.8 than for S= 1.2. At high

Prandtl numbers, the thermal boundary layer is con-

tained within the lower part of the liquid ®lm and the

temperature gradients vanish adjacent to the free sur-

face. This is fully analogous to the situation in a

steady-state aerodynamic boundary layer in an in®nite

¯uid medium at high Pr. The reason why the adjust-

ment of the temperature from Ts to To takes place

over a thin thermal boundary layer is the gradually

increasing importance of the terms on the left hand

side of Eq. (10) with increasing Pr. As the thickness of

the thermal boundary layer reduces at higher Pr, the

isothermal layer with uniform temperature To, but

variable velocity, on top of the thermal boundary layer

gradually thickens. In this isothermal liquid layer, a

delicate balance between thermal convection and local

variations prevails, while thermal conduction is negli-

gible. In the limit Pr 41, the local heat transfer rate

at the stretching sheet is therefore controlled by the

velocity in the immediate vicinity of the sheet which

can be expanded as f '(Z )21+Zf 0(0) for Z<<1. The

magnitude of the velocity gradient at the sheet f 0(0)
exhibited only a modest variation over the parameter

range from S= 0.8 to S= 1.2 with a local maximum

at S= 1.11 [15]. The observation that ÿf 0(0) for

S= 1.2 is less than 3% higher than for S= 0.8

explains why the dimensionless heat ¯ux ÿy '(0) for

S= 1.2 only marginally exceeds that for S= 0.8 for
Pr>1 in Fig. 5.
For Prandtl numbers of order unity and below the

surface temperature y(b ) attains a ®nite value below 1

(see Fig. 4) and the temperature gradients extend all
the way to the free surface. In the limiting case
Pr 4 0, however, the dimensionless surface tempera-

ture tends to unity, i.e. the temperature T becomes uni-
form in the vertical direction and equals Ts. This is
consistent with the trivial solution y(Z )=1 obtained

from the thermal energy equation (10) when Pr= 0.
For small but not zero values of Pr, the temperature
gradient y ' can be neglected in Eq. (10). If the stream-

wise velocity pro®le for simplicity is approximated as
f '(Z ) 1 1, the asymptotic solution

y�Z� � �e�2bÿZ�c � ecZ�=�1� e2bc� �14a�

where

c � �Pr�2� 3S=2��1=2 � 1 �14b�

can be derived analytically. The gradient of the tem-
perature pro®le at the stretching surface y= 0 thus

becomes

y 0�0�1ÿ c2b �15�

in the high di�usivity (low Pr ) limit. The combined
parameter c 2 increases with S, but this e�ect on the

temperature gradient (15) is more than outweighed by
the observation by Wang [15] that b is a rapidly decay-
ing function of S. The most striking observation from

Fig. 5 is, however, the linear variation of y '(0) with Pr
for Pr<<1, i.e. fully in accordance with the asymptotic
solution (15).

Fig. 5. Dimensionless heat ¯ux ÿy '(0) at the sheet vs Prandtl number for S= 0.8 (solid line) and S= 1.2 (broken line).
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5. Concluding remarks

The purpose of this paper was to present an exact
similarity solution for momentum and heat transfer in
an unsteady liquid ®lm whose motion is caused solely

by the linear stretching of a horizontal elastic sheet.
The main ®ndings can be summarized as follows:

1. A new similarity solution for the temperature ®eld

has been devised, which transforms the time-depen-
dent thermal energy equation to an ordinary di�er-
ential equation.

2. The Prandtl number Pr and the dimensionless par-
ameter S=a/b, the latter which re¯ects the relative
importance of unsteadiness a to the stretching rate

b, were identi®ed as the only controlling parameters.
3. The temperature was observed to increase mono-

tonically from the elastic sheet towards the free sur-
face, except in the high di�usivity limit Pr 4 0 in

which the surface temperature approached the vari-
able sheet temperature. At su�ciently high Pr, on
the other hand, the surface temperature became

equal to To and thus independent both of position
and time.

4. The in¯uence of the unsteadiness parameter S on

the heat ¯ux from the liquid ®lm to the stretching
sheet was more pronounced at low Prandtl numbers
than for Pri1, whereas the surface temperature
was most a�ected by S at intermediate Prandtl

numbers.

Appendix A

The special case of an isothermal sheet Ts=To, i.e.
Tref=0, must be treated separately. The dimensionless
temperature y(Z ) de®ned in Eq. (7b) does no longer

apply and should be replaced with a new dependent
variable yi de®ned as

T � Toyi�Z� �A1�
which should attain the same values as y at the bound-
aries Z=0 and Z=b, cf Eq. (11). The thermal energy
Eq. (5) now transforms into the following ODE

Pr

�
S

2
Zÿ f

�
y 0i � y 00i �A2�

for which the trivial solution yi (Z )=1 applies for all
Prandtl numbers. Physically this solution represents an
insulating liquid ®lm with uniform temperature T=To.

References

[1] E.M. Sparrow, J.L. Gregg, A boundary-layer treatment

of laminar ®lm condensation, ASME J. Heat Transfer

81 (1959) 13±18.

[2] E.M. Sparrow, J.L. Gregg, Mass transfer, ¯ow and heat

transfer about a rotating disk, ASME J. Heat Transfer

82 (1960) 294±302.

[3] B.S. Dandapat, P.C. Ray, Film cooling on a rotating

disk, Int. J. Non-Linear Mech. 25 (1990) 569±582.

[4] B.S. Dandapat, P.C. Ray, The e�ect of thermocapil-

larity on the ¯ow of a thin liquid ®lm on a rotating

disc, J. Phys. D: Appl. Phys. 27 (1994) 2041±2045.

[5] L.J. Crane, Flow past a stretching plate, Z. Angew.

Math. Phys. 21 (1970) 645±647.

[6] J. Vleggaar, Laminar boundary-layer behaviour on con-

tinuous accelerating surfaces, Chem. Engng Sci. 32

(1977) 1517±1525.

[7] P.S. Gupta, A.S. Gupta, Heat and mass transfer on a

stretching sheet with suction or blowing, Can. J. Chem.

Engng 55 (1977) 744±746.

[8] P. Carragher, L.J. Crane, Heat transfer on a continuous

stretching sheet, Z. Angew. Math. Mech. 62 (1982) 564±

565.

[9] L.J. Grubka, K.M. Bobba, Heat transfer characteristics

of a continuous stretching surface with variable tem-

perature, ASME J. Heat Transfer 107 (1985) 248±250.

[10] D.R. Jeng, T.C.A. Chang, K.J. DeWitt, Momentum

and heat transfer on a continuous moving surface,

ASME J. Heat Transfer 108 (1986) 532±539.

[11] B.K. Dutta, A.S. Gupta, Cooling of a stretching sheet

in a viscous ¯ow, Ind. Eng. Chem. Res. 26 (1987) 333±

336.

[12] C.-K. Chen, M-I. Char, Heat transfer of a continuous

stretching surface with suction or blowing, J. Math.

Anal. Appl. 135 (1988) 568±580.

[13] M.K. Laha, P.S. Gupta, A.S. Gupta, Heat transfer

characteristics of the ¯ow of an incompressible viscous

¯uid over a stretching sheet, WaÈ rme- und Sto�uÈ bertrag.

24 (1989) 151±153.

[14] N. Afzal, Heat transfer from a stretching surface, Int. J.

Heat Mass Transfer 36 (1993) 1128±1131.

[15] C.Y. Wang, Liquid ®lm on an unsteady stretching sur-

face, Quart. Appl. Math. XLVIII (1990) 601±610.

[16] H.I. Andersson, J.B. Aarseth, N. Braud, B.S. Dandapat,

Flow of a power-law ¯uid ®lm on an unsteady stretch-

ing surface, J. Non-Newtonian Fluid Mech. 62 (1996)

1±8.

[17] U.M. Ascher, R.M.M. Mattheij, R.D. Russell,

Numerical Solution of Boundary Value Problems for

Ordinary Di�erential Equations, Society for Industrial

and Applied Mathematics, Philadelphia, PA, 1995.

H.I. Andersson et al. / Int. J. Heat Mass Transfer 43 (2000) 69±7474


